login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107469 4-symbol substitution made from Cantor matrix by one level matrix self-similarity. 0
1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 2, 2, 4, 4, 4, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, 2, 2, 2, 4, 4, 4, 2, 2, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Matrix: M={{4, 2,2 1}, {0, 6, 0, 3}, {0, 0, 6, 3}, {0, 0, 0, 9}} Characteristic Polynomial: -x^4+25*x^3-228*x^2+900x-1296

LINKS

Table of n, a(n) for n=0..80.

F. M. Dekking, Recurrent Sets, Advances in Mathematics, vol. 44, no.1, April 1982, page 85, section 4.15, see Cantor set.

FORMULA

1->{1, 1, 2, 3, 4, 3, 2, 1, 1}, 2->{2, 2, 2, 4, 4, 4, 2, 2, 2}, 3->{3, 3, 3, 4, 4, 4, 3, 3, 3}, 4->{4, 4, 4, 4, 4, 4, 4, 4, 4}

MATHEMATICA

s[1] = {1, 1, 2, 3, 4, 3, 2, 1, 1}; s[2] = {2, 2, 2, 4, 4, 4, 2, 2, 2}; s[3] = {3, 3, 3, 4, 4, 4, 3, 3, 3}; s[4] = {4, 4, 4, 4, 4, 4, 4, 4, 4}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]]; aa = p[3]

CROSSREFS

Sequence in context: A179764 A266313 A017869 * A167600 A008287 A017859

Adjacent sequences:  A107466 A107467 A107468 * A107470 A107471 A107472

KEYWORD

nonn,uned

AUTHOR

Roger L. Bagula, May 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 08:23 EDT 2019. Contains 325155 sequences. (Running on oeis4.)