login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266313
Period 8 zigzag sequence; repeat [0, 1, 2, 3, 4, 3, 2, 1].
9
0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3, 2, 1, 0, 1, 2, 3, 4, 3
OFFSET
0,3
COMMENTS
Decimal expansion of 1111/90009. - Elmo R. Oliveira, Mar 03 2024
FORMULA
G.f.: x*(1+x+x^2+x^3)/(1-x+x^4-x^5).
a(n) = a(n-1) - a(n-4) + a(n-5) for n > 4.
a(n) = Sum_{i = 1..n} (-1)^floor((i-1)/4).
a(2n) = 2*A007877(n); a(2n+1) = A084101(n).
a(n) = abs(n - 8*round(n/8)). - Jon E. Schoenfield, Jan 01 2016
Euler transform of length 8 sequence [2, 0, 0, -2, 0, 0, 0, 1]. - Michael Somos, Feb 27 2020
a(n) = a(n-8) for n >= 8. - Wesley Ivan Hurt, Sep 07 2022
EXAMPLE
G.f. = x + 2*x^2 + 3*x^3 + 4*x^4 + 3*x^5 + 2*x^6 + x^7 + x^9 + ... - Michael Somos, Feb 27 2020
MAPLE
A266313:=n->[0, 1, 2, 3, 4, 3, 2, 1][(n mod 8)+1]: seq(A266313(n), n=0..100);
MATHEMATICA
CoefficientList[Series[x*(1 + x + x^2 + x^3)/(1 - x + x^4 - x^5), {x, 0, 100}], x]
PROG
(Magma) &cat[[0, 1, 2, 3, 4, 3, 2, 1]: n in [0..10]];
(PARI) x='x+O('x^100); concat(0, Vec(x*(1+x+x^2+x^3)/(1-x+x^4-x^5))) \\ Altug Alkan, Dec 29 2015
(PARI) {a(n) = abs((n+4)\8*8-n)}; /* Michael Somos, Feb 27 2020 */
CROSSREFS
Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), this sequence (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A084101.
Sequence in context: A017889 A017879 A179764 * A017869 A107469 A167600
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 26 2015
STATUS
approved