|
|
A271832
|
|
Period 12 zigzag sequence: repeat [0,1,2,3,4,5,6,5,4,3,2,1].
|
|
10
|
|
|
0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..85.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,-1,1).
|
|
FORMULA
|
G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5)/(1 - x + x^6 - x^7).
a(n) = a(n-1) - a(n-6) + a(n-7) for n>6.
a(n) = abs(n - 12*round(n/12)).
a(n) = Sum_{i=1..n} (-1)^floor((i-1)/6).
a(2n) = a(10n) = 2*A260686(n), a(2n+1) = A110551(n).
a(3n) = 3*A007877(n), a(4n) = a(8n) = 4*A011655(n).
a(6n) = A010677(n) = 6*A000035(n).
|
|
MAPLE
|
A271832:=n->[0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1][(n mod 12)+1]: seq(A271832(n), n=0..300);
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4 + x^5)/(1 - x + x^6 - x^7), {x, 0, 100}], x]
|
|
PROG
|
(MAGMA) &cat[[0, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1]: n in [0..10]];
(PARI) lista(nn) = for(n=0, nn, print1(abs(n-12*round(n/12)), ", ")); \\ Altug Alkan, Apr 15 2016
|
|
CROSSREFS
|
Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), this sequence (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18).
Cf. A010677, A011655, A110551.
Sequence in context: A122416 A307784 A134665 * A063260 A271859 A232240
Adjacent sequences: A271829 A271830 A271831 * A271833 A271834 A271835
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Wesley Ivan Hurt, Apr 15 2016
|
|
STATUS
|
approved
|
|
|
|