login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271835
Somos's sequence {a(5,n)} defined in comment in A018896: a(0)=a(1)= ... = a(11) = 1; for n>=12, a(n) = (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12).
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 11, 20, 36, 61, 97, 243, 425, 700, 1199, 2183, 4115, 14902, 43515, 102827, 214168, 418685, 1223440, 3053628, 9484929, 31351174, 95335734, 260010845, 1305343146, 4437434637, 12553187856, 35704506092
OFFSET
0,13
LINKS
Eric Weisstein's World of Mathematics, Somos Sequence
MATHEMATICA
a[k_, n_]:=a[k, n]= If[n>2k+1, (a[k, (n-1)]*a[k, (n-2k-1)]+(a[k, (n-k-1)])^2 )/a[k, (n-2k-2)], 1]; Map[a[5, #]&, Range[0, 43]] (* Peter J. C. Moses, Apr 15 2016 *)
RecurrenceTable[{Table[a[i]==1, {i, 0, 11}], a[n]==(a[n-1]a[n-11]+a[n-6]^2)/ a[n-12]}, a, {n, 50}](* Harvey P. Dale, Sep 24 2021 *)
PROG
(PARI) {a(n) = if(n< 12, 1, (a(n-1)*a(n-11) + a(n-6)^2)/a(n-12))};
for(n=0, 50, print1(a(n), ", ")) \\ G. C. Greubel, Feb 21 2018
(Magma) [n le 12 select 1 else (Self(n-1)*Self(n-11) + Self(n-6)^2 )/Self(n-12): n in [1..50]]; // G. C. Greubel, Feb 21 2018
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Apr 15 2016
STATUS
approved