login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A018896 a(n) = ( a(n-1)*a(n-7) + a(n-4)^2 ) / a(n-8); a(0) = ... = a(7) = 1. 12
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 9, 18, 34, 93, 180, 348, 724, 3033, 9666, 24986, 83761, 261033, 1023728, 3923791, 26128126, 105734485, 381740209, 1895904805, 14058722881, 97964968321, 517832518189, 4364261070929, 25225712161101, 181840424632390 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

From Vladimir Shevelev, Apr 04 2016: (Start)

For k>=0, an infinite sequence {a(k,n)} of Somos's sequences (n>=0) is:

a(k,0) = a(k,1)= ... = a(k,2*k+1) = 1;

and then for n>=2*k+2,

a(k,n) = (a(k,n-1)*a(k,n-2*k-1) + a(k,n-k-1)^2)/a(k,n-2*k-2).

In particular, {a(0,n)}=A006125, {a(1,n)}=A006720, {a(2,n)}=A102276, {a(3,n)}=A018896.

One can prove that the sequence {a(k,n)} has the first 4k+2 simple differences: 2k+1 zeros, after that k+1 1's and after that k consecutive squares, beginning with 2^2.

Further we have nontrivial differences. The first of them for k=0,1,2,... are 6,16,33,59,96,146,211,293,394,516,... that is {k^3/3 + 5*k^2/2 + 43*k/6 +6}.

(End)

LINKS

T. D. Noe, Table of n, a(n) for n=0..100

David Gale, Mathematical Entertainments, Mathematical Intelligencer, volume 18, number 3, Summer 1996, page 25.

Eric Weisstein's World of Mathematics, Somos Sequence

Index entries for two-way infinite sequences

MAPLE

f:= proc(n) option remember;

  if n <= 7 then 1 else

  (procname(n-1)*procname(n-7)+procname(n-4)^2)/procname(n-8)

  fi

end proc:

seq(f(n), n=0..50); # Robert Israel, Apr 04 2016

MATHEMATICA

RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==a[5]==a[6]==a[7]==a[8]==1, a[n]==(a[n-1]a[n-7]+a[n-4]^2)/a[n-8]}, a[n], {n, 50}] (* Harvey P. Dale, May 02 2011 *)

k = 3; Set[#, 1] & /@ Map[a[k, #] &, Range[0, 2 k + 1]]; a[k_, n_] /; n >= 2 k + 2 := (a[k, n - 1] a[k, n - 2 k - 1] + a[k, n - k - 1]^2)/ a[k, n - 2 k - 2]; Table[a[k, n], {n, 0, 35}] (* Michael De Vlieger, Apr 04 2016 *)

PROG

(Haskell)

a018896 n = a018896_list !! n

a018896_list = replicate 8 1 ++ f 8 where

   f x = ((a018896 (x - 1) * a018896 (x - 7) + a018896 (x - 4) ^ 2)

         `div` a018896 (x - 8)) : f (x + 1)

-- Reinhard Zumkeller, Oct 01 2012

(MAGMA) [n le 8 select 1 else (Self(n-1)*Self(n-7)+Self(n-4)^2 ) / Self(n-8): n in [1..40]]; // Vincenzo Librandi, Dec 08 2016

CROSSREFS

Cf. A006125, A006720, A102276.

Sequence in context: A106165 A305237 A088817 * A162374 A323289 A065885

Adjacent sequences:  A018893 A018894 A018895 * A018897 A018898 A018899

KEYWORD

nonn,nice

AUTHOR

Michael Somos

EXTENSIONS

More terms from Harvey P. Dale, May 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 11:18 EST 2019. Contains 329144 sequences. (Running on oeis4.)