login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106165 Number of inequivalent (indecomposable or decomposable) Type I but not Type II binary self-dual codes of length 2n. 3
0, 1, 1, 1, 1, 2, 3, 4, 5, 9, 16, 25, 46, 103, 261, 731, 3210, 24147 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

The minimal distance of these codes is not constrained. A105685 gives the number with the highest minimal distance.

LINKS

Table of n, a(n) for n=0..17.

R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.

J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. MR0558873

J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).

W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic., 11 (2005), 451-490.

G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.

V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.

E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).

CROSSREFS

Cf. A003178, A003179, A106162-A106167.

Sequence in context: A329049 A003271 A049796 * A305237 A088817 A018896

Adjacent sequences:  A106162 A106163 A106164 * A106166 A106167 A106168

KEYWORD

nonn,hard,more

AUTHOR

N. J. A. Sloane, May 09 2005, Aug 23 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 12 02:06 EDT 2021. Contains 343808 sequences. (Running on oeis4.)