login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323289
Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 (A323460) operation at most n times.
6
1, 2, 3, 4, 5, 9, 24, 59, 136, 362, 1365, 5992, 28187, 135951, 689058, 3908456, 24849118, 171022869, 1248075797
OFFSET
0,2
COMMENTS
Equally, this is the total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 1 (A323286) operation at most n times.
LINKS
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
EXAMPLE
After applying Choix de Bruxelles (version 1) twice to 1, we have seen the numbers {1,2,4}, so a(2)=3. After 5 applications, we have seen {1,2,4,8,16,13,26,32,112}, so a(5) = 9.
PROG
(Python)
from itertools import islice
def cdb2(n):
s, out = str(n), {n}
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return out
def agen():
reach, expand = {1}, [1]
while True:
yield len(reach)
newreach = {r for q in expand for r in cdb2(q) if r not in reach}
reach |= newreach
expand = list(newreach)
print(list(islice(agen(), 15))) # Michael S. Branicky, Jul 24 2022
CROSSREFS
Cf. A323286, A323287, A323452 (first differences), A323453, A323460.
Sequence in context: A018896 A356511 A162374 * A355374 A357601 A065885
KEYWORD
nonn,more,base,changed
AUTHOR
N. J. A. Sloane, Jan 15 2019
EXTENSIONS
a(7)-a(16) from Rémy Sigrist, Jan 15 2019
Deleted an incorrect comment. - N. J. A. Sloane, Jan 24 2019
a(17) from Michael S. Branicky, Jul 24 2022
a(18) from Michael S. Branicky, Jul 26 2022
STATUS
approved