OFFSET
1,1
COMMENTS
Equally, this is the largest number that can be obtained from the "Choix de Bruxelles", version 1 (A323286) operation applied to n.
Conjecture: If n contains no digit >= 5, then a(n) = 2*n; otherwise, a(n) is obtained from n by doubling the substring from the last digit >= 5 to the last digit. - Charlie Neder, Jan 19 2019. (This is true. - N. J. A. Sloane, Jan 22 2019)
Corollary: a(n)/n < 10 for all n, and a(n) = 10 - 1/k + O(1/k^2) for n = 10*k+5. - N. J. A. Sloane, Jan 23 2019
The high-water marks for a(n)/n occur at n = 1,15,25,35,45,..., cf. A017329. - N. J. A. Sloane, Jan 23 2019
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..10000
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
FORMULA
a(n) >= 2*n. - Rémy Sigrist, Jan 15 2019
PROG
(PARI) a(n, base=10) = { my (d=digits(n, base), v=2*n); for (w=1, #d, for (l=0, #d-w, if (d[l+1], my (h=d[1..l], m=fromdigits(d[l+1..l+w], base), t=d[l+w+1..#d]); v = max(v, fromdigits(concat([h, digits(m*2, base), t]), base))))); v } \\ Rémy Sigrist, Jan 15 2019
(Python)
def a(n):
s, out = str(n), {n}
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return max(out)
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jul 24 2022
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
N. J. A. Sloane, Jan 15 2019
EXTENSIONS
More terms from Rémy Sigrist, Jan 15 2019
STATUS
approved