login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323288
Largest number that can be obtained from the "Choix de Bruxelles", version 2 (A323460) operation applied to n.
4
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 110, 112, 114, 116, 118, 40, 42, 44, 46, 48, 210, 212, 214, 216, 218, 60, 62, 64, 66, 68, 310, 312, 314, 316, 318, 80, 82, 84, 86, 88, 410, 412, 414, 416, 418, 100, 102, 104, 106, 108, 510, 512, 514, 516, 518
OFFSET
1,1
COMMENTS
Equally, this is the largest number that can be obtained from the "Choix de Bruxelles", version 1 (A323286) operation applied to n.
Maximal element in row n of irregular triangle in A323460 (or, equally, A323286).
Conjecture: If n contains no digit >= 5, then a(n) = 2*n; otherwise, a(n) is obtained from n by doubling the substring from the last digit >= 5 to the last digit. - Charlie Neder, Jan 19 2019. (This is true. - N. J. A. Sloane, Jan 22 2019)
Corollary: a(n)/n < 10 for all n, and a(n) = 10 - 1/k + O(1/k^2) for n = 10*k+5. - N. J. A. Sloane, Jan 23 2019
The high-water marks for a(n)/n occur at n = 1,15,25,35,45,..., cf. A017329. - N. J. A. Sloane, Jan 23 2019
LINKS
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, "Choix de Bruxelles": A New Operation on Positive Integers, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, "Choix de Bruxelles": A New Operation on Positive Integers, Local copy.
FORMULA
a(n) >= 2*n. - Rémy Sigrist, Jan 15 2019
PROG
(PARI) a(n, base=10) = { my (d=digits(n, base), v=2*n); for (w=1, #d, for (l=0, #d-w, if (d[l+1], my (h=d[1..l], m=fromdigits(d[l+1..l+w], base), t=d[l+w+1..#d]); v = max(v, fromdigits(concat([h, digits(m*2, base), t]), base))))); v } \\ Rémy Sigrist, Jan 15 2019
(Python)
def a(n):
s, out = str(n), {n}
for l in range(1, len(s)+1):
for i in range(len(s)+1-l):
if s[i] == '0': continue
t = int(s[i:i+l])
out.add(int(s[:i] + str(2*t) + s[i+l:]))
if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
return max(out)
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Jul 24 2022
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
N. J. A. Sloane, Jan 15 2019
EXTENSIONS
More terms from Rémy Sigrist, Jan 15 2019
STATUS
approved