login
A194396
Numbers m such that Sum_{k=1..m} (<1/2 + k*r> - <k*r>) = 0, where r=sqrt(14) and < > denotes fractional part.
4
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 34, 38, 42, 46, 50, 54, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 94, 98, 102, 106, 110, 114, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150
OFFSET
1,1
COMMENTS
Every term is even; see A194368.
MATHEMATICA
r = Sqrt[14]; c = 1/2;
x[n_] := Sum[FractionalPart[k*r], {k, 1, n}]
y[n_] := Sum[FractionalPart[c + k*r], {k, 1, n}]
t1 = Table[If[y[n] < x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t1, 1]] (* A194395 *)
t2 = Table[If[y[n] == x[n], 1, 0], {n, 1, 200}];
Flatten[Position[t2, 1]] (* A194396 *)
t3 = Table[If[y[n] > x[n], 1, 0], {n, 1, 300}];
Flatten[Position[t3, 1]] (* A194397 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Aug 23 2011
STATUS
approved