Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #38 Jan 09 2025 13:00:48
%S 1,2,3,4,5,9,24,59,136,362,1365,5992,28187,135951,689058,3908456,
%T 24849118,171022869,1248075797
%N Total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 2 (A323460) operation at most n times.
%C Equally, this is the total number of distinct numbers that can be obtained by starting with 1 and applying the "Choix de Bruxelles", version 1 (A323286) operation at most n times.
%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane, <a href="http://arxiv.org/abs/1902.01444">"Choix de Bruxelles": A New Operation on Positive Integers</a>, arXiv:1902.01444 [math.NT], Feb 2019; Fib. Quart. 57:3 (2019), 195-200.
%H Eric Angelini, Lars Blomberg, Charlie Neder, Remy Sigrist, and N. J. A. Sloane,, <a href="/A307635/a307635.pdf">"Choix de Bruxelles": A New Operation on Positive Integers</a>, Local copy.
%e After applying Choix de Bruxelles (version 1) twice to 1, we have seen the numbers {1,2,4}, so a(2)=3. After 5 applications, we have seen {1,2,4,8,16,13,26,32,112}, so a(5) = 9.
%o (Python)
%o from itertools import islice
%o def cdb2(n):
%o s, out = str(n), {n}
%o for l in range(1, len(s)+1):
%o for i in range(len(s)+1-l):
%o if s[i] == '0': continue
%o t = int(s[i:i+l])
%o out.add(int(s[:i] + str(2*t) + s[i+l:]))
%o if t&1 == 0: out.add(int(s[:i] + str(t//2) + s[i+l:]))
%o return out
%o def agen():
%o reach, expand = {1}, [1]
%o while True:
%o yield len(reach)
%o newreach = {r for q in expand for r in cdb2(q) if r not in reach}
%o reach |= newreach
%o expand = list(newreach)
%o print(list(islice(agen(), 15))) # _Michael S. Branicky_, Jul 24 2022
%Y Cf. A323286, A323287, A323452 (first differences), A323453, A323460.
%K nonn,more,base,changed
%O 0,2
%A _N. J. A. Sloane_, Jan 15 2019
%E a(7)-a(16) from _Rémy Sigrist_, Jan 15 2019
%E Deleted an incorrect comment. - _N. J. A. Sloane_, Jan 24 2019
%E a(17) from _Michael S. Branicky_, Jul 24 2022
%E a(18) from _Michael S. Branicky_, Jul 26 2022