login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279319
Period 16 zigzag sequence: repeat [0,1,2,3,4,5,6,7,8,7,6,5,4,3,2,1].
9
0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5
OFFSET
0,3
COMMENTS
Decimal expansion of 11111111/900000009. - Elmo R. Oliveira, Feb 20 2024
FORMULA
a(n) = abs(n - 16*round(n/16)).
G.f.: x*(1 + x)*(1 + x^2)*(1 + x^4)/((1 - x)*(1 + x^8)). - Ilya Gutkovskiy, Dec 10 2016
a(n) = a(n-1)-a(n-8)+a(n-9). - Wesley Ivan Hurt, Nov 18 2021
a(n) = a(n-16) for n >= 16. - Wesley Ivan Hurt, Sep 07 2022
MATHEMATICA
PadRight[{}, 120, {0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1}] (* Vincenzo Librandi, Dec 10 2016 *)
With[{k = 16}, Table[Min[Abs[# - k], #] &@ Mod[n, k], {n, 0, 120}]] (* or *)
CoefficientList[Series[x (1 + x) (1 + x^2) (1 + x^4)/((1 - x) (1 + x^8)), {x, 0, 120}], x] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(Magma) &cat[[0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1]: n in [0..5]];
(Python)
def A279319(n): return (0, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5, 4, 3, 2, 1)[n&15] # Chai Wah Wu, Mar 02 2023
CROSSREFS
Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), A279313 (k=14), this sequence (k=16), A158289 (k=18).
Sequence in context: A331298 A325351 A363776 * A171890 A287793 A073795
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Dec 09 2016
STATUS
approved