The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271751 Period 10 zigzag sequence; repeat: [0, 1, 2, 3, 4, 5, 4, 3, 2, 1]. 10
 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Decimal expansion of 11111/900009. - Elmo R. Oliveira, Mar 03 2024 LINKS Table of n, a(n) for n=0..85. Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,-1,1). FORMULA G.f.: x*(1 + x + x^2 + x^3 + x^4)/(1 - x + x^5 - x^6). a(n) = a(n-1) - a(n-5) + a(n-6) for n>5. a(n) = abs(n - 10*round(n/10)). a(n) = Sum_{i=1..n} (-1)^floor((i-1)/5). a(2n) = 2*abs(A117444(n)). a(2n+7) = 2*A076839(n)-1 for n>0. a(n) = a(n-10) for n >= 10. - Wesley Ivan Hurt, Sep 07 2022 MAPLE a:=n->[0, 1, 2, 3, 4, 5, 4, 3, 2, 1][(n mod 10)+1]: seq(a(n), n=0..100); MATHEMATICA CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4)/(1 - x + x^5 - x^6), {x, 0, 30}], x] PROG (Magma) &cat[[0, 1, 2, 3, 4, 5, 4, 3, 2, 1]: n in [0..10]]; (PARI) a(n) = abs(n-10*round(n/10)); \\ Altug Alkan, Apr 13 2016 CROSSREFS Cf. A076839, A117444. Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), this sequence (k=10), A271832 (k=12), A279313 (k=14), A279319 (k=16), A158289 (k=18). Sequence in context: A237985 A143055 A339388 * A017890 A134011 A280913 Adjacent sequences: A271748 A271749 A271750 * A271752 A271753 A271754 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 21 07:08 EDT 2024. Contains 373540 sequences. (Running on oeis4.)