

A331298


Lexicographically earliest infinite sequence such that a(i) = a(j) => A001222(i) = A001222(j) and A061395(i) = A061395(j) for all i, j.


3



1, 2, 3, 4, 5, 6, 7, 8, 6, 9, 10, 11, 12, 13, 9, 14, 15, 11, 16, 17, 13, 18, 19, 20, 9, 21, 11, 22, 23, 17, 24, 25, 18, 26, 13, 20, 27, 28, 21, 29, 30, 22, 31, 32, 17, 33, 34, 35, 13, 17, 26, 36, 37, 20, 18, 38, 28, 39, 40, 29, 41, 42, 22, 43, 21, 32, 44, 45, 33, 22, 46, 35, 47, 48, 17, 49, 18, 36, 50, 51, 20, 52, 53, 38, 26, 54, 39, 55, 56, 29, 21, 57, 42, 58, 28, 59, 60, 22, 32, 29
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Restricted growth sequence transform of the ordered pair [A001222(n), A061395(n)].
For all i, j:
A318891(i) = A318891(j) => a(i) = a(j),
a(i) = a(j) => A331297(i) = A331297(j) => A326846(i) = A326846(j),
a(i) = a(j) => A331281(i) = A331281(j),
a(i) = a(j) => A331282(i) = A331282(j).


LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537
Index entries for sequences computed from indices in prime factorization


PROG

(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));
Aux331298(n) = [bigomega(n), A061395(n)];
v331298 = rgs_transform(vector(up_to, n, Aux331298(n)));
A331298(n) = v331298[n];


CROSSREFS

Cf. A001222, A061395, A318891, A326846, A331281, A331282.
Cf. also A331297, A331299.
Sequence in context: A234741 A063917 A234344 * A325351 A279319 A171890
Adjacent sequences: A331295 A331296 A331297 * A331299 A331300 A331301


KEYWORD

nonn


AUTHOR

Antti Karttunen, Jan 18 2020


STATUS

approved



