login
Lexicographically earliest infinite sequence such that a(i) = a(j) => A001222(i) = A001222(j) and A061395(i) = A061395(j) for all i, j.
3

%I #10 Jan 18 2020 18:23:01

%S 1,2,3,4,5,6,7,8,6,9,10,11,12,13,9,14,15,11,16,17,13,18,19,20,9,21,11,

%T 22,23,17,24,25,18,26,13,20,27,28,21,29,30,22,31,32,17,33,34,35,13,17,

%U 26,36,37,20,18,38,28,39,40,29,41,42,22,43,21,32,44,45,33,22,46,35,47,48,17,49,18,36,50,51,20,52,53,38,26,54,39,55,56,29,21,57,42,58,28,59,60,22,32,29

%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A001222(i) = A001222(j) and A061395(i) = A061395(j) for all i, j.

%C Restricted growth sequence transform of the ordered pair [A001222(n), A061395(n)].

%C For all i, j:

%C A318891(i) = A318891(j) => a(i) = a(j),

%C a(i) = a(j) => A331297(i) = A331297(j) => A326846(i) = A326846(j),

%C a(i) = a(j) => A331281(i) = A331281(j),

%C a(i) = a(j) => A331282(i) = A331282(j).

%H Antti Karttunen, <a href="/A331298/b331298.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%o (PARI)

%o up_to = 65537;

%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };

%o A061395(n) = if(1==n, 0, primepi(vecmax(factor(n)[, 1])));

%o Aux331298(n) = [bigomega(n),A061395(n)];

%o v331298 = rgs_transform(vector(up_to, n, Aux331298(n)));

%o A331298(n) = v331298[n];

%Y Cf. A001222, A061395, A318891, A326846, A331281, A331282.

%Y Cf. also A331297, A331299.

%K nonn

%O 1,2

%A _Antti Karttunen_, Jan 18 2020