login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234344
a(n) = |{0 < k < n: 2^{phi(k)/2} + 3^{phi(n-k)/2} is prime}|, where phi(.) is Euler's totient function.
14
0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 8, 7, 9, 12, 12, 10, 10, 10, 10, 16, 7, 11, 9, 6, 14, 11, 17, 12, 15, 15, 17, 16, 15, 19, 18, 12, 13, 9, 20, 11, 8, 17, 19, 19, 12, 17, 14, 16, 9, 21, 16, 13, 12, 16, 19, 17, 11, 21, 15, 16, 15, 17, 19, 16, 23, 11, 20, 15
OFFSET
1,7
COMMENTS
Conjecture: a(n) > 0 for all n > 5.
This implies that there are infinitely many primes of the form 2^k + 3^m, where k and m are positive integers.
EXAMPLE
a(6) = 1 since 2^{phi(3)/2} + 3^{phi(3)/2} = 5 is prime.
a(8) = 3 since 2^{phi(3)/2} + 3^{phi(5)/2} = 11, 2^{phi(4)/2} + 3^{phi(4)/2} = 5, and 2^{phi(5)/2} + 3^{phi(3)/2} = 7 are all prime.
MATHEMATICA
f[n_, k_]:=2^(EulerPhi[k]/2)+3^(EulerPhi[n-k]/2)
a[n_]:=Sum[If[PrimeQ[f[n, k]], 1, 0], {k, 1, n-1}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 23 2013
STATUS
approved