|
|
A266315
|
|
Numbers n such that 2*n and n^3 have the same digit sum.
|
|
1
|
|
|
0, 171, 324, 378, 468, 684, 1710, 3240, 3780, 4680, 6840, 17100, 28845, 29241, 32400, 34884, 37800, 46800, 46944, 48924, 68400, 69174, 84348, 171000, 242424, 288450, 292410, 324000, 348840, 378000, 467424, 468000, 469440, 489240, 493794, 684000, 691740
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..160
|
|
EXAMPLE
|
171 is in the sequence because 171^3 = 5000211 and 2*171 = 342 have the same digit sum: 9.
|
|
MATHEMATICA
|
Select[Range[0, 7 10^5], Total[IntegerDigits[2 #]] == Total[IntegerDigits[#^3]] &]
|
|
PROG
|
(Magma) [n: n in [0..2*10^6] | &+Intseq(2*n) eq &+Intseq(n^3)];
(PARI) isok(n) = sumdigits(2*n)==sumdigits(n^3); \\ Michel Marcus, Jan 02 2016
|
|
CROSSREFS
|
Cf. A000578, A005843, A070276, A260906.
Sequence in context: A115078 A183996 A062907 * A116459 A185610 A185837
Adjacent sequences: A266312 A266313 A266314 * A266316 A266317 A266318
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Vincenzo Librandi, Jan 01 2016
|
|
STATUS
|
approved
|
|
|
|