login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A260906
Numbers n such that 3*n and n^3 have the same digit sum.
2
0, 3, 6, 30, 60, 63, 126, 171, 252, 300, 324, 543, 585, 600, 630, 1260, 1281, 1710, 2520, 2925, 3000, 3240, 5430, 5850, 5946, 6000, 6300, 12600, 12606, 12633, 12810, 14631, 16263, 17100, 21618, 22308, 22971, 24663, 25200, 27633, 28845, 28887, 28965, 29241
OFFSET
1,2
COMMENTS
All terms are multiples of 3.
n is in the sequence iff 10*n is. Are there infinitely many terms not divisible by 10? - Robert Israel, Nov 20 2015
LINKS
FORMULA
A007953(A008585(a(n))) = A007953(A000578(a(n))).
EXAMPLE
126 is in the sequence because 126^3 = 2000376 and 3*126 = 378 have the same digit sum: 18.
MAPLE
select(n -> convert(convert(n^3, base, 10), `+`)=convert(convert(3*n, base, 10), `+`), 3*[$0..10^5]); # Robert Israel, Nov 20 2015
MATHEMATICA
Select[Range[0, 50000], Total[IntegerDigits[3 #]] == Total[IntegerDigits[#^3]] &]
PROG
(Magma) [n: n in [0..50000] | &+Intseq(3*n) eq &+Intseq(n^3)];
(PARI) for(n=0, 1e5, if(sumdigits(n^3)==sumdigits(3*n), print1(n, ", "))) \\ Altug Alkan, Nov 20 2015
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Vincenzo Librandi, Nov 18 2015
STATUS
approved