login
A049343
Numbers m such that 2m and m^2 have same digit sum.
3
0, 2, 9, 11, 18, 20, 29, 38, 45, 47, 90, 99, 101, 110, 119, 144, 146, 180, 182, 189, 198, 200, 245, 290, 299, 335, 344, 351, 362, 369, 380, 398, 450, 452, 459, 461, 468, 470, 479, 488, 495, 497, 639, 729, 794, 839, 848, 900, 929, 954, 990, 999
OFFSET
1,2
COMMENTS
An easy way to prove that this sequence is infinite is to observe that it contains all numbers of the form 10^k+1. - Stefan Steinerberger, Mar 31 2006
For n>0: digital root (A010888) of 2n or n^2 is either 4 or 9. - Reinhard Zumkeller, Oct 01 2007
REFERENCES
Problem 117 in Loren Larson's translation of Paul Vaderlind's book.
LINKS
Reinhard Zumkeller and Harvey P. Dale, Table of n, a(n) for n = 1..1000 (first 101 terms from Zumkeller)
FORMULA
A007953(A005843(a(n))) = A007953(A000290(a(n))). - Reinhard Zumkeller, Oct 01 2007
MATHEMATICA
Select[Range[0, 1000], Sum[DigitCount[2# ][[i]]*i, {i, 1, 9}] == Sum[DigitCount[ #^2][[i]]*i, {i, 1, 9}] &] (* Stefan Steinerberger, Mar 31 2006 *)
Select[Range[0, 1000], Total[IntegerDigits[2#]]==Total[ IntegerDigits[ #^2]]&] (* Harvey P. Dale, Sep 25 2012 *)
PROG
(Haskell)
import Data.List (elemIndices)
import Data.Function (on)
a049343 n = a049343_list !! (n-1)
a049343_list = elemIndices 0
$ zipWith ((-) `on` a007953) a005843_list a000290_list
-- Reinhard Zumkeller, Apr 03 2011
(Magma) [n: n in [0..1000] | &+Intseq(2*n) eq &+Intseq(n^2)]; // Vincenzo Librandi, Nov 17 2015
CROSSREFS
Cf. A058369, A077436 (binary). - Reinhard Zumkeller, Apr 03 2011
Sequence in context: A098934 A237877 A043307 * A131140 A022114 A041099
KEYWORD
nonn,base,easy,nice,look
AUTHOR
STATUS
approved