login
A049346
Coefficient of x^(-n) in expansion of continued fraction 0, x, x^2, x^3, x^4, ... .
6
0, 1, 0, 0, -1, 0, 0, 1, 0, 1, -1, 0, -2, 1, -1, 3, -2, 3, -4, 4, -6, 7, -8, 11, -13, 16, -20, 24, -31, 37, -46, 58, -70, 88, -108, 133, -167, 204, -252, 315, -386, 479, -594, 731, -909, 1122, -1386, 1720, -2124, 2628, -3254, 4022, -4980, 6160, -7618, 9432, -11665, 14433, -17860, 22093, -27341, 33824, -41847
OFFSET
0,13
COMMENTS
Absolute values are essentially A227310. - Franklin T. Adams-Watters, Oct 31 2014
LINKS
FORMULA
G.f.: 1 - 1/G(0), where G(k)= 1 + x^(k+1)/(1 - x^(k+1)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jun 29 2013
G.f.: W(0) - 1, where W(k) = 1 - x^(k+1)/( x^(k+1) - 1/(1 - x^(k+1)/( x^(k+1) + 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 27 2013
CROSSREFS
Sequence in context: A070036 A059779 A291874 * A227310 A291905 A347584
KEYWORD
sign
AUTHOR
Alain Lasjauniasith (lasjauni(AT)math.u-bordeaux.fr.yyy.com)
EXTENSIONS
Added more terms, Joerg Arndt, Jun 29 2013
STATUS
approved