OFFSET
0,1
COMMENTS
From Amiram Eldar, May 15 2023: (Start)
Named "Lucas triangle" by Josef (1983), and "Josef's triangle" by Koshy (2007).
LINKS
Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation, by Richard C. Bollinger, The Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 28.
Alexander Engstrom, Graph colouring and the total Betti number, arXiv preprint, arXiv:1412.8460 [math.CO], 2014.
Šána Josef, Lucas Triangle, The Fibonacci Quarterly, Vol. 21, No. 3 (1983), pp. 192-195.
Thomas Koshy, 91.01 The central elements in Josef's triangle, The Mathematical Gazette, Vol. 91, No. 520 (2007), pp. 63-68.
FORMULA
T(m, n) = T(m-1, n) + T(m-2, n); T(0, 0)=2, T(1, 0)=1, T(1, 1)=1, T(2, 1)=2.
EXAMPLE
Triangle starts:
2;
1,1;
3,2,3;
4,3,3,4;
...
MAPLE
T := proc(m, n) option remember: if m=0 and n=0 then RETURN(2) fi: if m=1 and n=0 then RETURN(1) fi: if m=1 and n=1 then RETURN(1) fi: if m=2 and n=1 then RETURN(2) fi: if m<=n+1 then RETURN(T(m, m-n)) fi: if m<n then RETURN(0) fi: T(m-1, n) + T(m-2, n): end:for m from 0 to 20 do for n from 0 to m do printf(`%d, `, T(m, n)) od: od: # James A. Sellers, Feb 22 2001
MATHEMATICA
T[0, k_] := T[0, k] = LucasL[k]; T[1, k_] := T[1, k] = Fibonacci[k + 2]; T[n_, k_] := T[n, k] = T[n - 1, k] + T[n - 2, k]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, May 15 2023 *)
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Feb 22 2001
EXTENSIONS
More terms from James A. Sellers, Feb 22 2001
STATUS
approved