login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059776
Three-quadrant Ferrers graphs that partition n.
3
1, 2, 5, 11, 24, 48, 95, 178, 328, 585, 1025, 1754, 2958, 4897, 8002, 12889, 20523, 32289, 50296, 77550, 118521, 179553, 269881, 402532, 596178, 876942, 1281777, 1862015, 2689405, 3862891, 5519403, 7846393, 11100970, 15632733, 21917280
OFFSET
0,2
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
FORMULA
a(n) ~ exp(Pi*sqrt(2*n)) / (2^(11/2) * n^(3/2)). - Vaclav Kotesovec, Jul 12 2018
MAPLE
t1 := add( (-1)^(j)*q^(j*(j+1)/2)*(1-q^(j+1))/(1-q), j=0..101); t3 := mul((1-q^n)^3, n=1..101); series(t1/t3, q, 101);
MATHEMATICA
nmax = 50; CoefficientList[Series[Sum[(-1)^k*x^(k*(k+1)/2)*(1 - x^(k + 1))/(1 - x), {k, 0, nmax}]/Product[(1 - x^k)^3, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2018 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved