OFFSET
1,3
COMMENTS
If n = 2^k then take G to be (Z/2Z)^k, the Abelian group with n=2^k elements and characteristic two. It is generated by any k linearly independent (non-identity) elements, so the automorphism group has size (n-1)(n-2)(n-4)...(n-2^(k-1)), which grows as n^log n. I think one can show that this is optimal for n=2^k and furthermore that this has the highest rate of growth for any infinite sequence of n's. - Michael Kleber, Feb 21 2001
LINKS
Eric M. Schmidt, Table of n, a(n) for n = 1..767
EXAMPLE
The corresponding groups are 1, Z2, Z3, (Z2)^2, Z5, S3, Z7, (Z2)^3, (Z3)^2, D5, Z11, A4, Z13, D7, Z15, (Z2)^4, Z17, ...
PROG
(GAP) A059773 := function(n) local max, f, i; if IsPrimePowerInt(n) then f := PrimePowersInt(n); return Product([0..f[2]-1], k->n-f[1]^k); fi; max := 1; for i in [1..NumberSmallGroups(n)] do max := Maximum(max, Size(AutomorphismGroup(SmallGroup(n, i)))); od; return max; end; # Eric M. Schmidt, Mar 02 2013
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Victor S. Miller, Feb 21 2001
EXTENSIONS
More terms from Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 09 2001
a(18)-a(56) from Stephen A. Silver, Feb 26 2013
STATUS
approved