login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056867 Nilpotent numbers: n such that every group of order n is nilpotent. 10
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 15, 16, 17, 19, 23, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 64, 65, 67, 69, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 119, 121, 123, 125, 127, 128, 131, 133, 135, 137, 139 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Contains exactly the numbers n for which gcd(n,|A153038(n)|)=1 [Pazderski]. - R. J. Mathar, Apr 03 2012
A group G of order m is nilpotent iff it has a quotient group of order m/d for each divisor d of m. - Des MacHale and Bernard Schott, Jul 15 2022
LINKS
J. Pakianathan and K. Shankar, Nilpotent Numbers, Amer. Math. Monthly, 107, August-September 2000, 631-634.
G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Archiv Math. 10 (1) (1959) 331.
Wikipedia, Nilpotent group.
FORMULA
n is in this sequence if p^k is not congruent to 1 mod q for any primes p and q dividing n such that p^e but not p^(e+1) divides n and k <= e. - Charles R Greathouse IV, Aug 27 2012
MATHEMATICA
A153038[1] = 1; A153038[n_] := (x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x); A056867 = Select[Range[140], GCD[#, Abs[A153038[#]]] == 1 &] (* Jean-François Alcover, May 15 2012, after R. J. Mathar *)
PROG
(PARI) is(n)=my(f=factor(n)); for(k=1, #f[, 1], for(j=1, f[k, 2], if(gcd(n, f[k, 1]^j-1)>1, return(0)))); 1 \\ Charles R Greathouse IV, Sep 18 2012
(GAP)
IsNilpotentInt := function(n)
local f, i, j; f := PrimePowersInt(n);
for i in [1..Length(f)/2] do
for j in [1..f[2*i]] do
if Gcd(f[2*i-1]^j-1, n) > 1 then return false; fi;
od;
od;
return true;
end;
Filtered([1..140], IsNilpotentInt); # Gheorghe Coserea, Dec 02 2017
CROSSREFS
Complement of A056868.
Sequence in context: A257144 A328674 A316476 * A320324 A321698 A325394
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Sep 02 2000
EXTENSIONS
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 13:24 EST 2023. Contains 367679 sequences. (Running on oeis4.)