OFFSET
1,2
COMMENTS
Contains exactly the numbers n for which gcd(n,|A153038(n)|)=1 [Pazderski]. - R. J. Mathar, Apr 03 2012
A group G of order m is nilpotent iff it has a quotient group of order m/d for each divisor d of m. - Des MacHale and Bernard Schott, Jul 15 2022
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
J. Pakianathan and K. Shankar, Nilpotent Numbers, Amer. Math. Monthly, 107, August-September 2000, 631-634.
G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Archiv Math. 10 (1) (1959) 331.
Wikipedia, Nilpotent group.
FORMULA
n is in this sequence if p^k is not congruent to 1 mod q for any primes p and q dividing n such that p^e but not p^(e+1) divides n and k <= e. - Charles R Greathouse IV, Aug 27 2012
MATHEMATICA
A153038[1] = 1; A153038[n_] := (x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x); A056867 = Select[Range[140], GCD[#, Abs[A153038[#]]] == 1 &] (* Jean-François Alcover, May 15 2012, after R. J. Mathar *)
PROG
(PARI) is(n)=my(f=factor(n)); for(k=1, #f[, 1], for(j=1, f[k, 2], if(gcd(n, f[k, 1]^j-1)>1, return(0)))); 1 \\ Charles R Greathouse IV, Sep 18 2012
(GAP)
IsNilpotentInt := function(n)
local f, i, j; f := PrimePowersInt(n);
for i in [1..Length(f)/2] do
for j in [1..f[2*i]] do
if Gcd(f[2*i-1]^j-1, n) > 1 then return false; fi;
od;
od;
return true;
end;
Filtered([1..140], IsNilpotentInt); # Gheorghe Coserea, Dec 02 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Sep 02 2000
EXTENSIONS
More terms from Francisco Salinas (franciscodesalinas(AT)hotmail.com), Dec 25 2001
STATUS
approved