login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110633 Every third term of A083946 where the self-convolution third power is congruent modulo 9 to A083946, which consists entirely of numbers 1 through 6. 3
1, 2, 6, 4, 6, 4, 3, 2, 6, 4, 2, 6, 6, 4, 4, 2, 4, 2, 6, 4, 3, 4, 2, 6, 1, 4, 2, 2, 3, 4, 1, 6, 6, 2, 6, 6, 1, 6, 2, 6, 6, 2, 4, 6, 2, 4, 4, 4, 2, 6, 6, 2, 2, 6, 4, 4, 2, 6, 6, 4, 5, 4, 2, 6, 2, 4, 1, 2, 5, 2, 3, 4, 6, 6, 6, 6, 2, 4, 5, 2, 3, 2, 1, 2, 4, 2, 5, 2, 4, 2, 6, 2, 2, 4, 4, 4, 3, 2, 1, 2, 6, 6, 2, 6, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..104.

EXAMPLE

A(x) = 1 + 2*x + 6*x^2 + 4*x^3 + 6*x^4 + 4*x^5 + 3*x^6 +...

A(x)^3 = 1 + 6*x + 30*x^2 + 92*x^3 + 246*x^4 + 492*x^5 +...

A(x)^3 (mod 9) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 +...

G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 +...

where G(x) is the g.f. of A083946.

PROG

(PARI) {a(n)=local(d=3, m=6, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}

CROSSREFS

Cf. A110632, A110634.

Sequence in context: A010465 A065630 A319376 * A240232 A119250 A059773

Adjacent sequences:  A110630 A110631 A110632 * A110634 A110635 A110636

KEYWORD

nonn

AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 15:50 EDT 2019. Contains 328223 sequences. (Running on oeis4.)