The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110634 Every 2nd term of A083946 where the self-convolution 2nd power is congruent modulo 4 to A083946, which consists entirely of numbers 1 through 6. 2
 1, 3, 3, 6, 3, 6, 6, 3, 6, 3, 6, 3, 6, 3, 6, 2, 6, 6, 6, 3, 6, 4, 6, 6, 4, 3, 3, 6, 3, 3, 3, 3, 6, 2, 3, 3, 1, 6, 6, 2, 6, 6, 3, 3, 6, 1, 6, 6, 6, 3, 6, 6, 3, 6, 1, 6, 6, 2, 3, 6, 6, 3, 3, 4, 6, 6, 2, 3, 6, 4, 3, 6, 2, 6, 3, 6, 3, 6, 2, 6, 6, 4, 3, 3, 2, 3, 3, 6, 3, 3, 5, 3, 3, 2, 6, 6, 2, 3, 6, 1, 3, 3, 5, 3, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS EXAMPLE A(x) = 1 + 3*x + 3*x^2 + 6*x^3 + 3*x^4 + 6*x^5 + 6*x^6 +... A(x)^2 = 1 + 6*x + 15*x^2 + 30*x^3 + 51*x^4 + 66*x^5 +... A(x)^2 (mod 4) = 1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 +... G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 +... where G(x) is the g.f. of A083946. PROG (PARI) {a(n)=local(d=2, m=6, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)} CROSSREFS Cf. A110632, A110633. Sequence in context: A339496 A336422 A040007 * A324467 A151787 A113397 Adjacent sequences:  A110631 A110632 A110633 * A110635 A110636 A110637 KEYWORD nonn AUTHOR Robert G. Wilson v and Paul D. Hanna, Aug 30 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 19:02 EDT 2021. Contains 344001 sequences. (Running on oeis4.)