login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110634 Every 2nd term of A083946 where the self-convolution 2nd power is congruent modulo 4 to A083946, which consists entirely of numbers 1 through 6. 2
1, 3, 3, 6, 3, 6, 6, 3, 6, 3, 6, 3, 6, 3, 6, 2, 6, 6, 6, 3, 6, 4, 6, 6, 4, 3, 3, 6, 3, 3, 3, 3, 6, 2, 3, 3, 1, 6, 6, 2, 6, 6, 3, 3, 6, 1, 6, 6, 6, 3, 6, 6, 3, 6, 1, 6, 6, 2, 3, 6, 6, 3, 3, 4, 6, 6, 2, 3, 6, 4, 3, 6, 2, 6, 3, 6, 3, 6, 2, 6, 6, 4, 3, 3, 2, 3, 3, 6, 3, 3, 5, 3, 3, 2, 6, 6, 2, 3, 6, 1, 3, 3, 5, 3, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..104.

EXAMPLE

A(x) = 1 + 3*x + 3*x^2 + 6*x^3 + 3*x^4 + 6*x^5 + 6*x^6 +...

A(x)^2 = 1 + 6*x + 15*x^2 + 30*x^3 + 51*x^4 + 66*x^5 +...

A(x)^2 (mod 4) = 1 + 2*x + 3*x^2 + 2*x^3 + 3*x^4 + 2*x^5 +...

G(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 6*x^5 +...

where G(x) is the g.f. of A083946.

PROG

(PARI) {a(n)=local(d=2, m=6, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}

CROSSREFS

Cf. A110632, A110633.

Sequence in context: A034188 A184849 A040007 * A324467 A151787 A113397

Adjacent sequences:  A110631 A110632 A110633 * A110635 A110636 A110637

KEYWORD

nonn

AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 30 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 13:24 EDT 2019. Contains 328299 sequences. (Running on oeis4.)