login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110635 Every 7th term of A083947 such that the self-convolution 7th power is congruent modulo 49 to A083947, which consists entirely of numbers 1 through 7. 2
1, 1, 5, 1, 1, 4, 2, 1, 1, 3, 5, 1, 2, 5, 1, 7, 6, 4, 4, 6, 4, 5, 7, 3, 4, 2, 4, 3, 3, 2, 7, 4, 6, 6, 3, 1, 1, 6, 5, 6, 6, 3, 1, 2, 5, 7, 3, 3, 7, 5, 5, 6, 4, 6, 3, 4, 2, 5, 4, 4, 7, 3, 4, 1, 5, 6, 7, 2, 2, 5, 4, 1, 4, 4, 1, 1, 4, 3, 6, 7, 6, 2, 6, 6, 2, 1, 6, 6, 1, 5, 2, 2, 5, 5, 4, 2, 3, 7, 4, 5, 1, 3, 6, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Congruent modulo 7 to A084207, where the self-convolution 7th power of A084207 equals A083947.

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = A083947(7*n) for n>=0.

G.f. satisfies: A(x^7) = G(x) - 7*x*((1-x^6)/(1-x))/(1-x^7), where G(x) is the g.f. of A083947.

G.f. satisfies: A(x)^7 = A(x^7) + 7*x*((1-x^6)/(1-x))/(1-x^7) + 49*x^2*H(x) where H(x) is the g.f. of A111584.

PROG

(PARI) {a(n)=local(p=7, A, C, X=x+x*O(x^(p*n))); if(n==0, 1, A=sum(i=0, n-1, a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1, p, C=polcoeff((A+k*x^(p*n))^(1/p), p*n); if(denominator(C)==1, return(k); break)))}

CROSSREFS

Cf. A083947, A111584, A084207.

Sequence in context: A260210 A139391 A196612 * A179773 A244977 A071170

Adjacent sequences:  A110632 A110633 A110634 * A110636 A110637 A110638

KEYWORD

nonn

AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 24 02:42 EDT 2019. Contains 325287 sequences. (Running on oeis4.)