login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110630
Every 2nd term of A083954 such that the self-convolution 2nd power is congruent modulo 8 to A083954, which consists entirely of numbers 1 through 4.
2
1, 2, 3, 4, 1, 4, 3, 4, 3, 4, 2, 2, 4, 4, 3, 2, 2, 2, 3, 2, 3, 2, 4, 2, 2, 4, 2, 4, 2, 2, 1, 4, 1, 2, 4, 4, 1, 2, 3, 4, 4, 4, 3, 4, 2, 2, 2, 2, 1, 4, 1, 2, 3, 2, 4, 4, 1, 4, 1, 4, 2, 2, 3, 4, 2, 4, 2, 4, 3, 4, 4, 2, 4, 2, 1, 2, 4, 4, 4, 4, 1, 2, 4, 4, 2, 2, 3, 4, 1, 2, 2, 4, 1, 2, 4, 4, 3, 2, 3, 4, 1, 4, 4, 4, 3
OFFSET
0,2
FORMULA
a(n) = A083954(2*n) for n>=0.
EXAMPLE
A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + x^4 + 4*x^5 + 3*x^6 + 4*x^7 +...
A(x)^2 = 1 + 4*x + 10*x^2 + 20*x^3 + 27*x^4 + 36*x^5 + 44*x^6 +...
A(x)^2 (mod 8) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +...
G083954(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 + 4*x^6 +...
where G083954(x) is the g.f. of A083954.
PROG
(PARI) {a(n)=local(d=2, m=4, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
Sequence in context: A327464 A318308 A003324 * A343321 A238883 A363126
KEYWORD
nonn
AUTHOR
STATUS
approved