login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A110627 Bisection of A083952 such that the self-convolution is congruent modulo 4 to A083952, which consists entirely of 1's and 2's. 1
1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Congruent modulo 2 to A084202 and A108336; the self-convolution of A084202 equals A083952.

LINKS

Table of n, a(n) for n=0..104.

FORMULA

a(n) = A083952(2*n) for n>=0. G.f. satisfies: A(x^2) = G(x) - 2*x/(1-x^2), where G(x) is the g.f. of A083952. G.f. satisfies: A(x)^2 = A(x^2) + 2*x/(1-x^2) + 4*x^2*H(x) where H(x) is the g.f. of A111581.

PROG

(PARI) {a(n)=local(p=2, A, C, X=x+x*O(x^(p*n))); if(n==0, 1, A=sum(i=0, n-1, a(i)*x^(p*i))+p*x*((1-x^(p-1))/(1-X))/(1-X^p); for(k=1, p, C=polcoeff((A+k*x^(p*n))^(1/p), p*n); if(denominator(C)==1, return(k); break)))}

CROSSREFS

Cf. A083952, A111581, A084202, A108336.

Sequence in context: A306737 A178474 A164822 * A205107 A228667 A336005

Adjacent sequences:  A110624 A110625 A110626 * A110628 A110629 A110630

KEYWORD

nonn

AUTHOR

Robert G. Wilson v and Paul D. Hanna, Aug 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 22:35 EDT 2021. Contains 348180 sequences. (Running on oeis4.)