login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110629
Every 4th term of A083954 such that the self-convolution 4th power is congruent modulo 8 to A083954, which consists entirely of numbers 1 through 4.
1
1, 3, 1, 3, 3, 2, 4, 3, 2, 3, 3, 4, 2, 2, 2, 1, 1, 4, 1, 3, 4, 3, 2, 2, 1, 1, 3, 4, 1, 1, 2, 3, 2, 2, 3, 4, 4, 1, 4, 4, 1, 4, 2, 3, 1, 2, 1, 4, 3, 3, 1, 4, 3, 3, 2, 3, 4, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 1, 4, 2, 2, 3, 1, 4, 3, 2, 1, 4, 3, 4, 4, 2, 1, 4, 1, 4, 4, 2, 4, 4, 1, 3, 3, 4, 1, 1, 1, 4, 3, 2, 1, 3, 1, 2, 2
OFFSET
0,2
FORMULA
a(n) = A083954(4*n) for n>=0.
EXAMPLE
A(x) = 1 + 3*x + x^2 + 3*x^3 + 3*x^4 + 2*x^5 + 4*x^6 + ...
A(x)^4 = 1 + 12*x + 58*x^2 + 156*x^3 + 315*x^4 + 620*x^5 +...
A(x)^4 (mod 8) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +...
G083954(x) = 1 + 4*x + 2*x^2 + 4*x^3 + 3*x^4 + 4*x^5 +...
where G083954(x) is the g.f. of A083954.
PROG
(PARI) {a(n)=local(d=4, m=4, A=1+m*x); for(j=2, d*n, for(k=1, m, t=polcoeff((A+k*x^j+x*O(x^j))^(1/m), j); if(denominator(t)==1, A=A+k*x^j; break))); polcoeff(A, d*n)}
CROSSREFS
Sequence in context: A050306 A205453 A328776 * A119979 A143149 A268498
KEYWORD
nonn
AUTHOR
STATUS
approved