|
|
A110625
|
|
Numerator of b(n) = -Sum_{k=1..n} A037861(k)/((2*k)*(2*k+1)), where A037861(k) = (number of 0's) - (number of 1's) in the binary representation of k.
|
|
6
|
|
|
1, 1, 3, 101, 5807, 77801, 82949, 170636, 170636, 170636, 363113, 363113, 84848, 710567, 22435781, 3901243741, 27210449083, 1003538672911, 248595095590537, 10165684261926701, 438167567023512863, 439119040574907047
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Numerators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Denominators are A110626.
|
|
LINKS
|
Petros Hadjicostas, Table of n, a(n) for n = 1..120
Jonathan Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, arXiv:math/0211148 [math.CA], 2002-2004.
Jonathan Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, Amer. Math. Monthly 112 (2005), 61-65.
Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), arXiv:math/0508042 [math.NT], 2005.
Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.
|
|
FORMULA
|
Lim_{n -> infinity} b(n) = log 4/Pi = 0.24156...
|
|
EXAMPLE
|
a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14.
The first few fractions b(n) are 1/6, 1/6, 3/14, 101/504, 5807/27720, 77801/360360, 82949/360360, ... = A110625/A110626. - Petros Hadjicostas, May 15 2020
|
|
PROG
|
(PARI) a(n) = numerator(-sum(k=1, n, (#binary(k) - 2*hammingweight(k))/(2*k*(2*k+1)))); \\ Petros Hadjicostas, May 15 2020
|
|
CROSSREFS
|
Cf. A037861, A073099, A094640, A110626.
Sequence in context: A336437 A069457 A142416 * A108220 A130733 A037062
Adjacent sequences: A110622 A110623 A110624 * A110626 A110627 A110628
|
|
KEYWORD
|
easy,frac,nonn
|
|
AUTHOR
|
Jonathan Sondow, Aug 01 2005
|
|
STATUS
|
approved
|
|
|
|