OFFSET
1,3
COMMENTS
LINKS
Petros Hadjicostas, Table of n, a(n) for n = 1..120
Jonathan Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, arXiv:math/0211148 [math.CA], 2002-2004.
Jonathan Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, Amer. Math. Monthly 112 (2005), 61-65.
Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), arXiv:math/0508042 [math.NT], 2005.
Jonathan Sondow, New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.
FORMULA
Lim_{n -> infinity} b(n) = log 4/Pi = 0.24156...
EXAMPLE
a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14.
The first few fractions b(n) are 1/6, 1/6, 3/14, 101/504, 5807/27720, 77801/360360, 82949/360360, ... = A110625/A110626. - Petros Hadjicostas, May 15 2020
PROG
(PARI) a(n) = numerator(-sum(k=1, n, (#binary(k) - 2*hammingweight(k))/(2*k*(2*k+1)))); \\ Petros Hadjicostas, May 15 2020
CROSSREFS
KEYWORD
easy,frac,nonn
AUTHOR
Jonathan Sondow, Aug 01 2005
STATUS
approved