

A110625


Numerator of b(n) = Sum(k=1 to n, A037861(k)/((2k)(2k+1))), where A037861(k) = (number of 0's)  (number of 1's) in binary representation of k.


5



1, 1, 3, 101, 5807, 77801, 82949, 170636, 170636, 170636, 363113, 363113, 84848, 710567, 22435781, 3901243741, 27210449083, 1003538672911, 248595095590537, 10165684261926701, 438167567023512863, 439119040574907047
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Numerators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Denominators are A110626.


LINKS

Table of n, a(n) for n=1..22.
J. Sondow, Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula, Amer. Math. Monthly 112 (2005) 6165.
J. Sondow, New VaccaType Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi), Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331340.


FORMULA

lim(n > infinity, b(n)) = log 4/Pi = 0.24156...


EXAMPLE

a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14.


CROSSREFS

Cf. A037861, A073099, A094640, A110626.
Sequence in context: A037114 A069457 A142416 * A108220 A130733 A037062
Adjacent sequences: A110622 A110623 A110624 * A110626 A110627 A110628


KEYWORD

easy,frac,nonn


AUTHOR

Jonathan Sondow, Aug 01 2005


STATUS

approved



