Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 May 15 2020 13:05:15
%S 1,1,3,101,5807,77801,82949,170636,170636,170636,363113,363113,84848,
%T 710567,22435781,3901243741,27210449083,1003538672911,248595095590537,
%U 10165684261926701,438167567023512863,439119040574907047
%N Numerator of b(n) = -Sum_{k=1..n} A037861(k)/((2*k)*(2*k+1)), where A037861(k) = (number of 0's) - (number of 1's) in the binary representation of k.
%C Numerators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Denominators are A110626.
%H Petros Hadjicostas, <a href="/A110625/b110625.txt">Table of n, a(n) for n = 1..120</a>
%H Jonathan Sondow, <a href="https://arxiv.org/abs/math/0211148"> Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula</a>, arXiv:math/0211148 [math.CA], 2002-2004.
%H Jonathan Sondow, <a href="https://www.jstor.org/stable/30037385"> Double integrals for Euler's constant and ln(4/Pi) and an analog of Hadjicostas's formula</a>, Amer. Math. Monthly 112 (2005), 61-65.
%H Jonathan Sondow, <a href="https://arxiv.org/abs/math/0508042">New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi)</a>, arXiv:math/0508042 [math.NT], 2005.
%H Jonathan Sondow, <a href="https://doi.org/10.1007/978-0-387-68361-4_23">New Vacca-Type Rational Series for Euler's Constant and Its "Alternating" Analog ln(4/Pi)</a>, Additive Number Theory, Festschrift In Honor of the Sixtieth Birthday of Melvyn B. Nathanson (D. Chudnovsky and G. Chudnovsky, eds.), Springer, 2010, pp. 331-340.
%F Lim_{n -> infinity} b(n) = log 4/Pi = 0.24156...
%e a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14.
%e The first few fractions b(n) are 1/6, 1/6, 3/14, 101/504, 5807/27720, 77801/360360, 82949/360360, ... = A110625/A110626. - _Petros Hadjicostas_, May 15 2020
%o (PARI) a(n) = numerator(-sum(k=1, n, (#binary(k) - 2*hammingweight(k))/(2*k*(2*k+1)))); \\ _Petros Hadjicostas_, May 15 2020
%Y Cf. A037861, A073099, A094640, A110626.
%K easy,frac,nonn
%O 1,3
%A _Jonathan Sondow_, Aug 01 2005