login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238883 Array:  row n gives number of times each upper triangular partition U(p) occurs as p ranges through the partitions of n. 4
1, 2, 3, 4, 1, 4, 3, 8, 1, 2, 10, 3, 2, 14, 5, 2, 1, 20, 3, 4, 2, 1, 30, 3, 2, 1, 6, 36, 13, 2, 3, 2, 52, 10, 4, 6, 3, 2, 70, 9, 9, 4, 6, 3, 94, 16, 6, 5, 10, 2, 2, 122, 24, 4, 8, 1, 12, 2, 2, 1, 160, 33, 4, 12, 6, 4, 9, 2, 1, 206, 37, 18, 14, 6, 2, 6, 8 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Suppose that p is a partition.  Let u, v, w be the number of 1's above, on, and below the principal antidiagonal, respectively, of the Ferrers matrix of p defined at A237981.  The upper triangular partition of p, denoted by U(p), is {u,v} if w = 0 and {u,v,w} otherwise.  In row n, the counted partitions are taken in Mathematica order (i.e., reverse lexicographic).  A000041 = sum of numbers in row n, and A238884(n) = (number of numbers in row n) = number of upper triangular partitions of n.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..300

Clark Kimberling and Peter J. C. Moses, Ferrers Matrices and Related Partitions of Integers

EXAMPLE

First 12 rows:

1

2

3

4 .. 1

4 .. 3

8 .. 1 .. 2

10 . 3 .. 2

14 . 5 .. 2 .. 1

20 . 3 .. 4 .. 2 .. 1

30 . 3 .. 2 .. 1 .. 6

36 . 13 . 2 .. 3 .. 2

52 . 10 . 4 .. 6 .. 3 .. 2

Row 6 arises as follows:  there are 3 upper triangular (UT) partitions:  51, 33, 321, of which 51 is produced from the 8 partitions  6, 51, 42, 411, 3111, 2211, 21111, and 111111, while the UT partition 33 is produced from the single partition 321, and the only other UT partition of 6, namely 321, is produced from the partitions 33 and 222.  (For example, the rows of the Ferrers matrix of 222 are (1,1,0), (1,1,0), (1,1,0), with principal antidiagonal (0,1,1), so that u = 3, v = 2, w = 1.)

MATHEMATICA

ferrersMatrix[list_] := PadRight[Map[Table[1, {#}] &, #], {#, #} &[Max[#, Length[#]]]] &[list]; ut[list_] := Select[Map[Total[Flatten[#]] &, {LowerTriangularize[#, -1], Diagonal[#], UpperTriangularize[#, 1]}] &[Reverse[ferrersMatrix[list]]], # > 0 &];

t[n_] := #[[Reverse[Ordering[PadRight[Map[First[#] &, #]]]]]] &[  Tally[Map[Reverse[Sort[#]] &, Map[ut, IntegerPartitions[n]]]]]

u[n_] := Table[t[n][[k]][[1]], {k, 1, Length[t[n]]}]; v[n_] := Table[t[n][[k]][[2]], {k, 1, Length[t[n]]}]; TableForm[Table[t[n], {n, 1, 12}]]

z = 20; Table[Flatten[u[n]], {n, 1, z}]

Flatten[Table[u[n], {n, 1, z}]]

Table[v[n], {n, 1, z}]

Flatten[Table[v[n], {n, 1, z}]] (* A238883 *)

Table[Length[v[n]], {n, 1, z}]  (* A238884 *)

(* Peter J. C. Moses, Mar 04 2014 *)

CROSSREFS

Cf. A238884, A238885, A238886, A237981, A000041.

Sequence in context: A270313 A003324 A110630 * A257053 A129717 A276380

Adjacent sequences:  A238880 A238881 A238882 * A238884 A238885 A238886

KEYWORD

nonn,tabf,easy

AUTHOR

Clark Kimberling, Mar 06 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 26 04:25 EDT 2017. Contains 288752 sequences.