login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A208952
Number of distinct values of the areas of the convex hulls of permutations {(1,p(1)), (2,p(2)), ..., (n,p(n))} of {1, 2, ..., n}, considered as points in the plane.
1
1, 1, 2, 5, 11, 24, 39, 60
OFFSET
1,3
EXAMPLE
For n=3, the two permutations (sets of points) {(1,1),(2,2),(3,3)} and {(1,3),(2,2),(3,1)} have a convex hull with zero area, whereas the remaining four permutations {(1,1),(2,3),(3,2)}, {(1,2),(2,1),(3,3)}, {(1,2),(2,3),(3,1)}, and {(1,3),(2,1),(3,2)} each have a convex hull with area 3/2. Thus there are two distinct values of the areas, so a(3)=2.
MATHEMATICA
(* v. 8.0*) <<ComputationalGeometry`; a={}; For[n=1, n<=8, n++, {Print[n]; p=Permutations[Range[n]]; an={}; For[k=1, k<=Length[p], k++, {pk=p[[k]]; spk = Table[{i, pk[[i]]}, {i, 1, n}]; AppendTo[an, ConvexHullArea[spk]] }]; AppendTo[a, Length[Union[an]]] }]; Print[a];
CROSSREFS
Sequence in context: A354150 A344782 A191240 * A091358 A091359 A059776
KEYWORD
nonn,more
AUTHOR
John W. Layman, Mar 03 2012
STATUS
approved