
EXAMPLE

For n=3, the two permutations (sets of points) {(1,1),(2,2),(3,3)} and {(1,3),(2,2),3,1)} have a convex hull with zero area, whereas the remaining four permutations {(1,1),(2,3),(3,2)}, {(1,2),(2,1),(3,3)}, {(1,2),(2,3),(3,1)}, and {(1,3),(2,1),(3,2)} each have a convex hull with area 3/2. Thus there are two distinct values of the areas, so a(3)=2.


MATHEMATICA

(* v. 8.0*) <<ComputationalGeometry`; a={}; For[n=1, n<=8, n++, {Print[n]; p=Permutations[Range[n]]; an={}; For[k=1, k<=Length[p], k++, {pk=p[[k]]; spk = Table[{i, pk[[i]]}, {i, 1, n}]; AppendTo[an, ConvexHullArea[spk]] }]; AppendTo[a, Length[Union[an]]] }]; Print[a];
