login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059777
Number of self-conjugate three-quadrant Ferrers graphs that partition n.
6
1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 16, 19, 24, 31, 39, 47, 58, 72, 89, 107, 129, 158, 192, 228, 273, 329, 393, 465, 551, 655, 776, 911, 1070, 1261, 1480, 1726, 2014, 2354, 2742, 3180, 3688, 4279, 4954, 5716, 6590, 7603, 8754, 10049, 11532
OFFSET
0,5
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
FORMULA
G.f.: 1/((1+x)*Sum_{k>=0} (-x)^(k*(k+1)/2)). [Corrected by N. J. A. Sloane, Jul 10 2022 at the suggestion of Eduardo Brietzke.] a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*(A002129(k)-1)*a(n-k). A006950(n) = a(n-1) + a(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: 1/((1+x)*G(0)), where G(k)= 1 - x^(2*k+1)/(1 - x^(2*k+2)/(x^(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: conjecture: 1/(Q(0) - 1), where Q(k) = 1 + (-x)^k - (-x)^(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2013
a(n) ~ exp(sqrt(n/2)*Pi)/(8*sqrt(2)*n). - Vaclav Kotesovec, Sep 26 2016
G.f.: Sum_{k>=0} x^(2*k) * Product_{j=1..k} (1+x^(2*j-1))/(1-x^(2*j)). - Seiichi Manyama, Jul 11 2018
MAPLE
mul((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..101); # g.f.
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved