OFFSET
0,5
REFERENCES
G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: 1/((1+x)*Sum_{k>=0} (-x)^(k*(k+1)/2)). [Corrected by N. J. A. Sloane, Jul 10 2022 at the suggestion of Eduardo Brietzke.] a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*(A002129(k)-1)*a(n-k). A006950(n) = a(n-1) + a(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: 1/((1+x)*G(0)), where G(k)= 1 - x^(2*k+1)/(1 - x^(2*k+2)/(x^(2*k+2) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
G.f.: conjecture: 1/(Q(0) - 1), where Q(k) = 1 + (-x)^k - (-x)^(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 25 2013
a(n) ~ exp(sqrt(n/2)*Pi)/(8*sqrt(2)*n). - Vaclav Kotesovec, Sep 26 2016
G.f.: Sum_{k>=0} x^(2*k) * Product_{j=1..k} (1+x^(2*j-1))/(1-x^(2*j)). - Seiichi Manyama, Jul 11 2018
MAPLE
mul((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..101); # g.f.
MATHEMATICA
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 26 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 21 2001
STATUS
approved