login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of self-conjugate three-quadrant Ferrers graphs that partition n.
6

%I #38 Jul 10 2022 15:35:57

%S 1,0,1,1,2,2,3,4,6,7,9,12,16,19,24,31,39,47,58,72,89,107,129,158,192,

%T 228,273,329,393,465,551,655,776,911,1070,1261,1480,1726,2014,2354,

%U 2742,3180,3688,4279,4954,5716,6590,7603,8754,10049,11532

%N Number of self-conjugate three-quadrant Ferrers graphs that partition n.

%D G. E. Andrews, Three-quadrant Ferrers graphs, Indian J. Math., 42 (No. 1, 2000), 1-7.

%H Seiichi Manyama, <a href="/A059777/b059777.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: 1/((1+x)*Sum_{k>=0} (-x)^(k*(k+1)/2)). [Corrected by _N. J. A. Sloane_, Jul 10 2022 at the suggestion of Eduardo Brietzke.] a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*(A002129(k)-1)*a(n-k). A006950(n) = a(n-1) + a(n), n > 0. - _Vladeta Jovovic_, Sep 22 2002

%F G.f.: 1/((1+x)*G(0)), where G(k)= 1 - x^(2*k+1)/(1 - x^(2*k+2)/(x^(2*k+2) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 20 2013

%F G.f.: conjecture: 1/(Q(0) - 1), where Q(k) = 1 + (-x)^k - (-x)^(k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Nov 25 2013

%F a(n) ~ exp(sqrt(n/2)*Pi)/(8*sqrt(2)*n). - _Vaclav Kotesovec_, Sep 26 2016

%F G.f.: Sum_{k>=0} x^(2*k) * Product_{j=1..k} (1+x^(2*j-1))/(1-x^(2*j)). - _Seiichi Manyama_, Jul 11 2018

%p mul((1+q^(2*n+3))/(1-q^(2*n+2)), n=0..101); # g.f.

%t nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 26 2016 *)

%Y Cf. A002129, A006950, A059776, A059778, A316675.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Feb 21 2001