login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059782
Triangle T(n,k) giving exponent of power of 3 dividing entry (n,k) of trinomial triangle A027907.
0
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 1, 0, 2, 2, 1, 2, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 3, 0, 0, 2, 0, 0, 2, 0, 0, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 0, 0, 0, 0, 1, 1
OFFSET
0,30
REFERENCES
B. A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 118.
EXAMPLE
0; 0,0,0; 0,0,1,0,0; 0,1,1,0,1,1,0; ...
MAPLE
with(numtheory): T := proc(i, j) option remember: if i >= 0 and j=0 then RETURN(1) fi: if i >= 0 and j=2*i then RETURN(1) fi: if i >= 1 and j=1 then RETURN(i) fi: if i >= 1 and j=2*i-1 then RETURN(i) fi: T(i-1, j-2)+T(i-1, j-1)+T(i-1, j): end: for i from 0 to 20 do for j from 0 to 2*i do if T(i, j) mod 3 <> 0 then printf(`%d, `, 0) fi: if T(i, j) mod 3 = 0 and T(i, j) mod 2 = 0 then printf(`%d, `, ifactors(T(i, j))[2, 2, 2] ) fi: if T(i, j) mod 3 = 0 and T(i, j) mod 2 = 1 then printf(`%d, `, ifactors(T(i, j))[2, 1, 2] ) fi: #printf(`%d, `, T(i, j)) od:od: # James A. Sellers, Feb 22 2001
CROSSREFS
Sequence in context: A373429 A158566 A128410 * A093654 A342627 A220115
KEYWORD
nonn,easy,tabf
AUTHOR
N. J. A. Sloane, Feb 22 2001
EXTENSIONS
More terms from James A. Sellers, Feb 22 2001
STATUS
approved