login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373429
Triangle read by rows: Coefficients of the polynomials S1(n, x) * EZ(n, x), where S1 denote the Stirling1 polynomials and EZ the Eulerian zig-zag polynomials A205497.
2
1, 0, 1, 0, -1, 1, 0, 2, -1, -2, 1, 0, -6, -7, 21, -6, -3, 1, 0, 24, 118, -147, -91, 126, -28, -3, 1, 0, -120, -1406, -109, 3749, -2084, -450, 514, -94, -1, 1, 0, 720, 16956, 34240, -72307, -15475, 56286, -21125, -674, 1635, -262, 5, 1
OFFSET
0,8
EXAMPLE
Tracing the computation:
0: [1] * [1] = [1]
1: [1] * [0, 1] = [0, 1]
2: [1] * [0, -1, 1] = [0, -1, 1]
3: [1, 1] * [0, 2, -3, 1] = [0, 2, -1, -2, 1]
4: [1, 3, 1] * [0, -6, 11, -6, 1] = [0, -6, -7, 21, -6, -3, 1]
5: [1, 7, 7, 1] * [0, 24, -50, 35, -10, 1] = [0, 24, 118, -147, -91, 126,-28,-3,1]
MAPLE
EZP(Stirling1, 7); # Using function EZP from A373432.
CROSSREFS
Cf. A048994 (Stirling1), A205497 (zig-zag Eulerian), A320956 (row sums).
Sequence in context: A269942 A094645 A105793 * A158566 A128410 A059782
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Jun 07 2024
STATUS
approved