

A269942


Triangle read by rows, the coefficients of the inverse partial Ppolynomials.


1



1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 1, 0, 5, 5, 1, 5, 2, 3, 1, 0, 14, 21, 3, 6, 1, 14, 12, 2, 9, 3, 4, 1, 0, 42, 84, 28, 28, 7, 7, 1, 42, 56, 7, 14, 2, 28, 21, 3, 14, 4, 5, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,8


COMMENTS

The triangle of coefficients of the partial Ppolynomials is A269941. For the definition of the inverse partial Ppolynomials see the link 'Ptransform'.


LINKS

Table of n, a(n) for n=0..51.
Peter Luschny, The Ptransform.


EXAMPLE

[[1]],
[[0], [1]],
[[0], [1], [1]],
[[0], [2, 1], [2], [1]],
[[0], [5, 5, 1], [5, 2], [3], [1]],
[[0], [14, 21, 3, 6, 1], [14, 12, 2], [9, 3], [4], [1]]],
[[0], [42,84,28,28,7,7,1],[42,56,7,14,2],[28,21,3],[14,4],[5],[1]]
Replacing the sublists by their sums reduces the triangle to a signed version of the triangle A097805. The column 1 of sublists is A111785 in a different order.


PROG

(Sage)
# For function PMultiCoefficients see A269941.
PMultiCoefficients(7, inverse = True)


CROSSREFS

Cf. A097805, A111785, A268441, A268442, A269941.
Sequence in context: A240159 A309447 A320312 * A094645 A105793 A158566
Adjacent sequences: A269939 A269940 A269941 * A269943 A269944 A269945


KEYWORD

sign,tabf


AUTHOR

Peter Luschny, Mar 08 2016


STATUS

approved



