login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269944
Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.
7
1, 0, 1, 0, 1, 1, 0, 4, 5, 1, 0, 36, 49, 14, 1, 0, 576, 820, 273, 30, 1, 0, 14400, 21076, 7645, 1023, 55, 1, 0, 518400, 773136, 296296, 44473, 3003, 91, 1, 0, 25401600, 38402064, 15291640, 2475473, 191620, 7462, 140, 1
OFFSET
0,8
COMMENTS
Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
The analog for the Stirling set numbers is A269945.
LINKS
FORMULA
T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
From Fabián Pereyra, Apr 25 2022: (Start)
T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
From Peter Luschny, Feb 29 2024: (Start)
T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - Peter Luschny, Aug 03 2024
EXAMPLE
Triangle starts:
[1]
[0, 1]
[0, 1, 1]
[0, 4, 5, 1]
[0, 36, 49, 14, 1]
[0, 576, 820, 273, 30, 1]
[0, 14400, 21076, 7645, 1023, 55, 1]
MAPLE
T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
# Alternatively with the P-transform (cf. A269941):
A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n, k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
# From Peter Luschny, Feb 29 2024: (Start)
# Computed as the coefficients of polynomials:
P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
# Alternative, using the exponential generating function:
egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # (End)
# Alternative, row polynomials:
rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..6); # Peter Luschny, Aug 03 2024
MATHEMATICA
T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[_, _] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
(* Jean-François Alcover, Jul 25 2019 *)
PROG
(Sage)
stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
norm = lambda n, k: (-1)^k*factorial(2*n)/factorial(2*k)
M = PtransMatrix(7, stircycle2, norm)
for m in M: print(m)
CROSSREFS
Variants: A204579 (signed, row 0 missing), A008955.
Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).
Sequence in context: A016714 A211799 A113950 * A121906 A028360 A010301
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Mar 22 2016
STATUS
approved