Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #50 Aug 03 2024 05:17:22
%S 1,0,1,0,1,1,0,4,5,1,0,36,49,14,1,0,576,820,273,30,1,0,14400,21076,
%T 7645,1023,55,1,0,518400,773136,296296,44473,3003,91,1,0,25401600,
%U 38402064,15291640,2475473,191620,7462,140,1
%N Triangle read by rows, Stirling cycle numbers of order 2, T(n, n) = 1, T(n, k) = 0 if k < 0 or k > n, otherwise T(n, k) = T(n-1, k-1) + (n-1)^2*T(n-1, k), for 0 <= k <= n.
%C Also known as central factorial numbers |t(2*n, 2*k)| (cf. A008955).
%C The analog for the Stirling set numbers is A269945.
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/P-Transform">The P-transform</a>.
%H Peter Luschny, <a href="https://github.com/PeterLuschny/PartitionTransform/blob/main/PartitionTransform.ipynb">The Partition Transform -- A SageMath Jupyter Notebook</a>.
%H B. K. Miceli, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Miceli/miceli4.html">Two q-Analogues of Poly-Stirling Numbers</a>, J. Integer Seq., 14 (2011), 11.9.6.
%F T(n,k) = (-1)^k*((2*n)! / (2*k)!)*P[n, k](s(n)) where P is the P-transform and s(n) = (n - 1)^2 / (n*(4*n - 2)). The P-transform is defined in the link. See the Sage and Maple implementations below.
%F T(n, 1) = ((n - 1)!)^2 for n >= 1 (cf. A001044).
%F T(n, n-1) = n*(n - 1)*(2*n - 1)/6 for n >= 1 (cf. A000330).
%F Row sums: Product_{k=1..n} ((k - 1)^2 + 1) for n >= 0 (cf. A101686).
%F From _Fabián Pereyra_, Apr 25 2022: (Start)
%F T(n,k) = (-1)^(n-k)*Sum_{j=2*k..2*n} Stirling1(2*n,j)*binomial(j,2*k)*(n-1)^(j-2*k).
%F T(n,k) = Sum_{j=0..2*k} (-1)^(j - k)*Stirling1(n, j)*Stirling1(n, 2*k - j). (End)
%F From _Peter Luschny_, Feb 29 2024: (Start)
%F T(n, k) = (-1)^k*[x^(2*k)] P(x, n) where P(x, n) = Product_{j=0..n-1} (j-x)*(j+x).
%F T(n, k) = (2*n)!*[t^(n-k)] [x^(2*n)] cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)). (End)
%F T(n, k) = (-1)^k*[x^k] Pochhammer(-sqrt(x), n) * Pochhammer(sqrt(x), n). - _Peter Luschny_, Aug 03 2024
%e Triangle starts:
%e [1]
%e [0, 1]
%e [0, 1, 1]
%e [0, 4, 5, 1]
%e [0, 36, 49, 14, 1]
%e [0, 576, 820, 273, 30, 1]
%e [0, 14400, 21076, 7645, 1023, 55, 1]
%p T := proc(n, k) option remember; if n=k then return 1 fi; if k<0 or k>n then return 0 fi; T(n-1, k-1)+(n-1)^2*T(n-1, k) end: seq(seq(T(n, k), k=0..n), n=0..8);
%p # Alternatively with the P-transform (cf. A269941):
%p A269944_row := n -> PTrans(n, n->`if`(n=1, 1, (n-1)^2/(n*(4*n-2))), (n,k)->(-1)^k*(2*n)!/(2*k)!): seq(print(A269944_row(n)), n=0..8);
%p # From _Peter Luschny_, Feb 29 2024: (Start)
%p # Computed as the coefficients of polynomials:
%p P := (x, n) -> local j; mul((j - x)*(j + x), j = 0..n-1):
%p T := (n, k) -> (-1)^k*coeff(P(x, n), x, 2*k):
%p for n from 0 to 6 do seq(T(n, k), k = 0..n) od;
%p # Alternative, using the exponential generating function:
%p egf := cosh(2*arcsin(sqrt(t)*x/2)/sqrt(t)):
%p ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
%p Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, n-k), k = 0..n):
%p seq(print(Trow(n)), n = 0..9); # (End)
%p # Alternative, row polynomials:
%p rowpoly := n -> pochhammer(-sqrt(x), n) * pochhammer(sqrt(x), n):
%p row := n -> local k; seq((-1)^k*coeff(expand(rowpoly(n)), x, k), k = 0..n):
%p seq(print(row(n)), n = 0..6); # _Peter Luschny_, Aug 03 2024
%t T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + (n - 1)^2*T[n - 1, k]; T[_, _] = 0; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
%t (* _Jean-François Alcover_, Jul 25 2019 *)
%o (Sage)
%o stircycle2 = lambda n: 1 if n == 1 else (n-1)^2/(n*(4*n-2))
%o norm = lambda n,k: (-1)^k*factorial(2*n)/factorial(2*k)
%o M = PtransMatrix(7, stircycle2, norm)
%o for m in M: print(m)
%Y Variants: A204579 (signed, row 0 missing), A008955.
%Y Cf. A007318 (order 0), A132393 (order 1), A269947 (order 3).
%Y Cf. A000330 (subdiagonal), A001044 (column 1), A101686 (row sums), A269945 (Stirling set), A269941 (P-transform).
%K nonn,tabl
%O 0,8
%A _Peter Luschny_, Mar 22 2016