login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211799
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y<k.
3
0, 0, 0, 1, 1, 0, 4, 5, 1, 0, 10, 13, 5, 1, 0, 20, 26, 14, 5, 1, 0, 35, 48, 29, 14, 5, 1, 0, 56, 78, 53, 30, 14, 5, 1, 0, 84, 119, 88, 55, 30, 14, 5, 1, 0, 120, 173, 134, 90, 55, 30, 14, 5, 1, 0, 165, 240, 195, 138, 91, 55, 30, 14, 5, 1, 0, 220, 323, 270, 201, 139, 91
OFFSET
1,7
COMMENTS
Row 1: A002292
Row 2: A211637
Row 3: A211651
Limiting row sequence: A000330
Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.
EXAMPLE
Northwest corner:
0...0...1...4....10...20...35...56
0...1...5...13...26...48...78...119
0...1...5...14...29...53...88...134
0...1...5...14...30...55...90...138
0...1...5...14...30...55...91...139
MATHEMATICA
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k > x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A000292 *)
Table[t[2, n], {n, 1, z}] (* A211637 *)
Table[t[3, n], {n, 1, z}] (* A211651 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1],
{n, 1, 12}, {k, 1, n}]] (* A211799 *)
Table[k (k - 1) (2 k - 1)/6,
{k, 1, z}] (* row-limit sequence, A000330 *)
(* Peter J. C. Moses, Apr 13 2012 *)
CROSSREFS
Cf. A211790.
Sequence in context: A375943 A122753 A016714 * A113950 A269944 A121906
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 21 2012
STATUS
approved