login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211802
R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2*w^k < x^k + y^k; square array read by descending antidiagonals.
6
0, 3, 0, 11, 3, 0, 28, 13, 3, 0, 56, 32, 13, 3, 0, 99, 64, 34, 13, 3, 0, 159, 113, 68, 34, 13, 3, 0, 240, 181, 117, 70, 34, 13, 3, 0, 344, 272, 187, 125, 70, 34, 13, 3, 0, 475, 388, 282, 197, 125, 70, 34, 13, 3, 0, 635, 535, 406, 292, 203, 125, 70, 34, 13, 3, 0
OFFSET
1,2
COMMENTS
Row 1: A182260.
Row 2: A211800.
Row 3: A211801.
Limiting row sequence: A016061.
Let R be the array in this sequence and let R' be the array in A211805. Then R(k,n) + R'(k,n) = 3^(n-1).
See the Comments at A211790.
EXAMPLE
Northwest corner:
0 3 11 28 56 99 159 240
0 3 13 32 64 113 181 272
0 3 13 34 68 117 187 282
0 3 13 34 70 125 197 292
0 3 13 34 70 125 203 302
MATHEMATICA
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k < x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A182260 *)
Table[t[2, n], {n, 1, z}] (* A211800 *)
Table[t[3, n], {n, 1, z}] (* A211801 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12},
{k, 1, n}]] (* this sequence *)
Table[k (k - 1) (4 k + 1)/6, {k, 1,
z}] (* row-limit sequence, A016061 *)
(* Peter J. C. Moses, Apr 13 2012 *)
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 22 2012
EXTENSIONS
Definition corrected by Georg Fischer, Sep 10 2022
STATUS
approved