login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211805
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k>=x^k+y<k.
5
1, 5, 1, 16, 5, 1, 36, 14, 5, 1, 69, 32, 14, 5, 1, 117, 61, 30, 14, 5, 1, 184, 103, 57, 30, 14, 5, 1, 272, 162, 99, 55, 30, 14, 5, 1, 385, 240, 156, 91, 55, 30, 14, 5, 1, 525, 341, 230, 146, 91, 55, 30, 14, 5, 1, 696, 465, 323, 220, 140, 91, 55, 30, 14, 5, 1, 900
OFFSET
1,2
COMMENTS
Row 1: A055232
Row 2: A211803
Row 3: A211804
Limiting row sequence: A000330
Let R be the array in A211802 and let R' be the array in A211805. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.
EXAMPLE
Northwest corner:
1...5...16...36...69...117...184
1...5...14...32...61...103...162
1...5...14...30...57...99....156
1...5...14...30...55...91....146
1...5...14...30...55...91....140
MATHEMATICA
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[2 w^k >= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A055232 *)
Table[t[2, n], {n, 1, z}] (* A211803 *)
Table[t[3, n], {n, 1, z}] (* A211804 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12},
{k, 1, n}]] (* A211805 *)
Table[k (k + 1) (2 k + 1)/6,
{k, 1, z}] (* row-limit sequence, A000330 *)
(* Peter J. C. Moses, Apr 13 2012 *)
CROSSREFS
Cf. A211790.
Sequence in context: A283434 A019429 A221364 * A211808 A093826 A144699
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 22 2012
STATUS
approved