login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y<k.
3

%I #5 Dec 04 2016 19:46:28

%S 0,0,0,1,1,0,4,5,1,0,10,13,5,1,0,20,26,14,5,1,0,35,48,29,14,5,1,0,56,

%T 78,53,30,14,5,1,0,84,119,88,55,30,14,5,1,0,120,173,134,90,55,30,14,5,

%U 1,0,165,240,195,138,91,55,30,14,5,1,0,220,323,270,201,139,91

%N Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y<k.

%C Row 1: A002292

%C Row 2: A211637

%C Row 3: A211651

%C Limiting row sequence: A000330

%C Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1).

%C See the Comments at A211790.

%e Northwest corner:

%e 0...0...1...4....10...20...35...56

%e 0...1...5...13...26...48...78...119

%e 0...1...5...14...29...53...88...134

%e 0...1...5...14...30...55...90...138

%e 0...1...5...14...30...55...91...139

%t z = 48;

%t t[k_, n_] := Module[{s = 0},

%t (Do[If[w^k > x^k + y^k, s = s + 1],

%t {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];

%t Table[t[1, n], {n, 1, z}] (* A000292 *)

%t Table[t[2, n], {n, 1, z}] (* A211637 *)

%t Table[t[3, n], {n, 1, z}] (* A211651 *)

%t TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]

%t Flatten[Table[t[k, n - k + 1],

%t {n, 1, 12}, {k, 1, n}]] (* A211799 *)

%t Table[k (k - 1) (2 k - 1)/6,

%t {k, 1, z}] (* row-limit sequence, A000330 *)

%t (* _Peter J. C. Moses_, Apr 13 2012 *)

%Y Cf. A211790.

%K nonn,tabl

%O 1,7

%A _Clark Kimberling_, Apr 21 2012