login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211796
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k<=x^k+y^k.
3
1, 8, 1, 26, 7, 1, 60, 22, 7, 1, 115, 51, 22, 7, 1, 196, 99, 50, 22, 7, 1, 308, 168, 96, 50, 22, 7, 1, 456, 265, 163, 95, 50, 22, 7, 1, 645, 393, 255, 161, 95, 50, 22, 7, 1, 880, 556, 378, 253, 161, 95, 50, 22, 7, 1, 1166, 760, 534, 374, 252, 161, 95, 50, 22, 7
OFFSET
1,2
COMMENTS
Row 1: A002413
Row 2: A211634
Row 3: A211650
Limiting row sequence: A002412
Let R be the array in A211796 and let R' be the array in A211799. Then R(k,n)+R'(k,n)=3^(n-1).
See the Comments at A211790.
EXAMPLE
Northwest corner:
1...8...26...60...115...196...308
1...7...22...51...99....168...265
1...7...22...50...96....163...255
1...7...22...50...95....161...253
1...7...22...50...95....161...252
MATHEMATICA
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k <= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A002413 *)
Table[t[2, n], {n, 1, z}] (* A211634 *)
Table[t[3, n], {n, 1, z}] (* A211650 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* A211796 *)
Table[k (k - 1) (2 k - 1)/6, {k, 1,
z}] (* row-limit sequence, A002412 *)
(* Peter J. C. Moses, Apr 13 2012 *)
CROSSREFS
Cf. A211790.
Sequence in context: A183892 A377851 A019432 * A138505 A002173 A050458
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 21 2012
STATUS
approved