login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211793
Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and w^k >= x^k + y^k.
1
0, 1, 0, 4, 1, 0, 10, 5, 1, 0, 20, 13, 5, 1, 0, 35, 28, 14, 5, 1, 0, 56, 50, 29, 14, 5, 1, 0, 84, 80, 53, 30, 14, 5, 1, 0, 120, 121, 88, 55, 30, 14, 5, 1, 0, 165, 175, 134, 90, 55, 30, 14, 5, 1, 0, 220, 244, 195, 138, 91, 55, 30, 14, 5, 1, 0, 286, 327, 270, 201, 139
OFFSET
1,4
COMMENTS
Limiting row sequence: A000330.
FORMULA
A211790(k,n) + R(k,n) = 3^(n-1).
EXAMPLE
Northwest corner:
0, 1, 4, 10, 20, 35, 56, 84
0, 1, 5, 13, 28, 50, 80, 121
0, 1, 5, 14, 29, 53, 88, 134
0, 1, 5, 14, 30, 55, 90, 138
0, 1, 5, 14, 30, 55, 91, 139
0, 1, 5, 14, 30, 55, 91, 140
MATHEMATICA
z = 48;
t[k_, n_] := Module[{s = 0},
(Do[If[w^k >= x^k + y^k, s = s + 1],
{w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)];
Table[t[1, n], {n, 1, z}] (* A000292 *)
Table[t[2, n], {n, 1, z}] (* A211636 *)
Table[t[3, n], {n, 1, z}] (* A211651 *)
TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]]
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]] (* this sequence *)
Table[k (k - 1) (2 k - 1)/6, {k, 1,
z}] (* row-limit sequence, A000330 *)
(* Peter J. C. Moses, Apr 13 2012 *)
CROSSREFS
Cf. A211790.
Cf. A000292 (row 1), A211636 (row 2), A211651 (row 3), A000330.
Sequence in context: A089962 A363971 A127155 * A145880 A048516 A060638
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Apr 21 2012
STATUS
approved