login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211791
a(n) = Sum_{y=1..n} Sum_{x=1..n} floor((x^k + y^k)^(1/k)) with k = 2.
3
1, 7, 23, 54, 103, 175, 276, 409, 579, 791, 1050, 1360, 1724, 2149, 2640, 3198, 3832, 4543, 5337, 6217, 7192, 8265, 9437, 10716, 12103, 13609, 15231, 16978, 18857, 20869, 23018, 25307, 27745, 30337, 33084, 35992, 39066, 42309, 45728
OFFSET
1,2
COMMENTS
Row 2 of A211798.
FORMULA
a(n) = Sum_{y=1..n} Sum_{x=1..n} floor(sqrt(x^2 + y^2)).
EXAMPLE
For a(3) we get the floor() values (1+2+3) + (2+2+3) + (3+3+4) = 23.
MATHEMATICA
f[x_, y_, k_] := f[x, y, k] = Floor[(x^k + y^k)^(1/k)]
t[k_, n_] := Sum[Sum[f[x, y, k], {x, 1, n}], {y, 1, n}]
Table[t[1, n], {n, 1, 45}] (* 2*A002411 *)
Table[t[2, n], {n, 1, 45}] (* A211791 *)
Table[t[3, n], {n, 1, 45}] (* A211792 *)
TableForm[Table[t[k, n], {k, 1, 12},
{n, 1, 16}]] (* A211798 *)
Flatten[Table[t[k, n - k + 1], {n, 1, 12}, {k, 1, n}]]
CROSSREFS
Sequence in context: A038796 A332492 A304724 * A004068 A261893 A022815
KEYWORD
nonn
AUTHOR
Clark Kimberling, Apr 26 2012
EXTENSIONS
Definition corrected by Georg Fischer, Sep 10 2022
STATUS
approved