The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304724 Primes congruent to {7, 16, 20, 23, 24, 25} mod 29. 1
 7, 23, 53, 83, 103, 107, 139, 181, 197, 199, 223, 227, 239, 257, 277, 281, 313, 373, 397, 401, 431, 487, 509, 547, 571, 587, 661, 683, 691, 719, 761, 857, 877, 919, 953, 977, 1009, 1031, 1039, 1051, 1069, 1093, 1097, 1109, 1151, 1213, 1283, 1301, 1321, 1399, 1499 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Muniru A Asiru, Table of n, a(n) for n = 1..2000 Wanlin Li, Elena Mantovan, Rachel Pries, and Yunqing Tang, Newton Polygons of cyclic covers of the projective line branched at three points, arXiv:1805.04598.[math.NT], 2018 (see Example 3.9, page 8). MAPLE select(isprime, select(n->modp(n, 29)=7 or modp(n, 29)=16 or modp(n, 29)=20 or modp(n, 29)=23 or modp(n, 29)=24 or modp(n, 29)=25, [\$1..1500])); # Muniru A Asiru, Jun 03 2018 MATHEMATICA Select[Prime[Range[250]], MemberQ[{7, 16, 20, 23, 24, 25}, Mod[#, 29]]&] PROG (Magma) [p: p in PrimesUpTo(1500) | p mod 29 in [7, 16, 20, 23, 24, 25]]; (PARI) is(n) = ispseudoprime(n) && #setintersect([7, 16, 20, 23, 24, 25], Set(lift(Mod(n, 29))))==1 \\ Felix Fröhlich, May 25 2018 CROSSREFS Cf. A000040, A005384, A005385. Sequence in context: A299255 A038796 A332492 * A211791 A004068 A261893 Adjacent sequences: A304721 A304722 A304723 * A304725 A304726 A304727 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, May 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 10:56 EST 2023. Contains 367650 sequences. (Running on oeis4.)