login
A060638
Triangle T(n,k) (0 <= k <= n) giving number of edges in the "flip graph" whose nodes are tilings of the k-dimensional zonotope constructed from n vectors.
16
0, 1, 0, 4, 1, 0, 12, 6, 1, 0, 32, 36, 8, 1, 0, 80, 240, 100, 10, 1, 0, 192, 1800, 2144, 264, 12, 1, 0, 448, 15120, 80360, 22624, 672, 14, 1, 0, 1024, 141120
OFFSET
0,4
COMMENTS
The zonotope Z(n,k) is the projection of the n-dimensional hypercube onto the k-dimensional space and the tiles are the projections of the k-dimensional faces of the hypercube.
REFERENCES
A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
LINKS
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
EXAMPLE
0
1 0
4 1 0
12 6 1 0
...
KEYWORD
nonn,tabl,hard,more,nice
AUTHOR
N. J. A. Sloane, Apr 16 2001
EXTENSIONS
Edited by Manfred Scheucher, Mar 08 2022
STATUS
approved