OFFSET
0,2
COMMENTS
The zonotope Z(n,k) is the projection of the n-dimensional hypercube onto the k-dimensional space and the tiles are the projections of the k-dimensional faces of the hypercube.
T(n,k) is also the number of signotopes on n elements of rank r=k+1. A signotope on n elements of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference). - Manfred Scheucher, Feb 09 2022
REFERENCES
A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999
Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
LINKS
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
EXAMPLE
Triangle T(n,k) begins:
1;
2, 1;
4, 2, 1;
8, 6, 2, 1;
16, 24, 8, 2, 1;
32, 120, 62, 10, 2, 1;
64, 720, 908, 148, 12, 2, 1;
128, 5040, 24698, 7686, 338, 14, 2, 1;
...
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Apr 16 2001
EXTENSIONS
Edited by Manfred Scheucher, Mar 08 2022
STATUS
approved